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ABSTRACT 

 
In a paper in 1995 investigating �the risk of stocks in the long run�, Zvi Bodie concluded that 
�for guarantors of money-fixed annuities, the proposition that stocks in their portfolios are a 
better hedge the longer the maturity of their obligations is unambiguously wrong�.  This paper 
investigates this proposition, and finds that Bodie�s conclusion is unambiguously wrong, but 
that everything else is ambiguous.  Bodie�s model, when properly formulated, in effect 
required total investment in the risk-free asset for all terms of investment.  In this paper 
different levels and formulations of guarantee are discussed, with the guarantee protected by 
put options or, equivalently, by dynamic portfolio hedging.  The risk of stocks may increase 
with term, or fall, or rise and fall, or fall and rise, depending on the form of the guarantee and 
the measure chosen to represent risk. 
 As an aside, the �value� of options, as opposed to their price, is discussed, and it is 
shown that, in general, put options are dear and call options cheap, for any but the most risk-
averse investor. 
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1 Bodie’s argument 
 
1.1 In a paper in the Financial Analysts Journal, published in 1995, Professor Zvi Bodie 
investigates the �proposition that investing in common stocks is less risky the longer an 
investor plans to hold them�.  He concludes that �for guarantors of money-fixed annuities, the 
proposition that stocks in their portfolios are a better hedge the longer the maturity of their 
obligations is unambiguously wrong�.  It is my contention that Bodie�s methodology is 
flawed, and that his conclusion is far from unambiguous. 
 
1.2 Note that the word �stocks� has quite different meanings in America and Britain, 
whereas the word �share� is unambiguous; for an international audience I therefore use 
�share�.  I also assume, as does Bodie, that all dividends are reinvested, so strictly we invest 
in a share total return index. 
 
1.3 Bodie rests his argument on �the cost of insurance against a shortfall�.  He defines the 
cost of shortfall insurance as �the additional amount of money an investor has to add at the 
investment starting date to assure that, at the horizon date, the portfolio will have a value at 
least as great as it would have earning the risk-free interest rate�.  He assumes $1 invested in 



 

 

shares; he calculates the cost, P, of a (European) put option with an exercise price equal to the 
rolled-up amount of $1 invested for t years at the risk free rate.  The cost of such an �at the 
discounted money� put option does not depend on the risk free rate, but only on the standard 
deviation of the share price process and the term.  The Black-Scholes formula simplifies to 
give a value of P (per unit share price) of N(σ√T/2) � N(�σ√T/2), where N(.) is the normal 
distribution function; σ is the standard deviation of the share price process, and T is the term 
to go.  He correctly finds that P increases with T and draws his conclusion. 
 
1.4 A closer look at what is happening shows that Bodie assumes that the amount invested 
is 1 + P(T), where P(T) is the put option price for term T.  Thus the amount invested increases 
with T.  This is not very realistic.  Let us consider a rather different model, where the amount 
invested remains constant, and what we pay for the put options comes out of the invested 
amount.  Bodie, in a footnote, does recognise this as a possible model. 
 
1.5 For convenience of exposition, I shall assume that we have $1,000 to invest, and that we 
can buy shares at a unit price of $1.  Thus if we invest all our funds in shares we can buy 
1,000 shares.  Alternatively, we can spend part of our money on put options, and invest less in 
shares.  Assume that we buy n shares, and n corresponding put options, each at a price of p 
with an exercise price of E.  We spend 1 + p on each �unit� consisting of a combination of a 
share and a put option, which costs us n(1 + p).  Thus must equal our original investment of 
$1,000, so n(1 + p) = 1,000.  If shares perform poorly, and we exercise the options, we receive 
E for each option instead of the share proceeds, so we get a minimum amount of nE, which 
we shall call G. 
 
1.6 To jump ahead: we shall find that if we wish to have G equal to the proceeds of risk-free 
investment (as Bodie would like) then the number of shares we can buy falls to zero, the put 
option price is infinite, and in effect we have to invest all our funds in a risk-free investment.  
This is true whatever the term.  So Bodie�s methodology is saying that, if we wish to 
guarantee that we shall get at least the proceeds of risk-free investment on all our money, we 
have to invest wholly in the risk-free investment, and we shall get no more than those 
proceeds either.  (In fact if we could get more than that, we would have an arbitrage 
opportunity, which is not likely to persist.)  Thus, if we are obliged to guarantee the proceeds 
of risk-free investment, then we cannot afford to invest except in risk-free investments, and 
investing in shares at all is unsafe.  If Bodie had restricted himself to this statement, he would 
have been on safe and uncontentious ground. 
 
 
2 A more realistic model 
 
2.1 Now let us investigate my more realistic model further.  We have: n(1 + p) = 1,000 and 
nE = G.  The cost of the put option, p, is a function of E.  It is also a function of the term, T, 
the standard deviation, σ, and the risk-free interest rate, which I shall assume is a constant δ, 
independent of T (I shall also assume for simplicity that σ is constant).  Thus we get: 
G(1 + p(E)) = 1,000E, an implicit equation in E (assuming G fixed), which has no more than 
one solution (and may have none).  Given G, and also T, δ and σ, and using the standard 
Black-Scholes formula, we can find E by some recursive method.  (I use the secant method, 
but any other will do).  Once we know E, we can get p(E) and also n.  This is very similar to 
what I describe in Wilkie (1987), but there in relation to the guarantees under with profit 
insurance policies. 
 



 

 

2.2 To remind the reader, the Black-Scholes formula for a European put option (exercisable 
only at the expiry date) in this case (with the share price equal to 1) can be expressed as: 
 
 W = E.exp(�δT).N(�d2) � N(�d1) 
 
with 
 d1 = log(1/(E.exp(�δT)))/σ√T + ½σ√T 
 d2 = log(1/(E.exp(�δT)))/σ√T � ½σ√T 
 
and N(.) is the normal distribution function. 
 
2.3 If G is zero, then E = 0, so we spend nothing on put options, and invest all our funds in 
shares.  We find empirically that as G increases so do E and p(E), and n reduces.  As G 
approaches the proceeds of risk-free investment, namely 1,000exp(δT), so E and also p(E) 
increase without limit, and n tends to zero, which is the result asserted in ¶1.6.  If we choose a 
value for G greater than 1,000exp(δT) we find no solution, so we can do no better than to 
guarantee the proceeds of risk-free investment. 
 
2.4 What should we choose for G?  And, having chosen G, how should we compare the 
results of investing some of our money in shares and some in options over different periods?  
Clearly, for a fixed term T, the higher we choose G, the higher the lower limit of our final 
proceeds, but the less we can invest in shares, so the lower the upside potential from share 
investment.  The expected return from our investment reduces, and the riskiness also does, 
from a top level equal to the return and risk on shares to a bottom level equal to the proceeds 
on risk-free investment.  But the return is highly skewed, so calculating a variance does not 
seem the natural way forward.  Without postulating something about an investor�s attitude to 
risk (or perhaps our own attitude, since I have said that �we invest�), especially to downside 
risk, or perhaps an explicit utility function, we cannot decide what value of G to choose or to 
recommend. 
 
2.5 But we can compare results across different terms for comparable values of G.  I have 
investigated three formulations for G.  Formulation 1 is a naive one, where G is constant by 
term.  I choose values of G = L, where L = 600, 800, 1000, 1,200, etc.  If G is greater than the 
proceeds of risk free investment, then we cannot achieve it, so for values of G greater than 
1,000 we need to wait a few years before the guarantee is effective.  Formulation 2 is a 
guarantee that is a constant proportion of the proceeds of risk-free investment, so 
G = K.exp(δT), where K = 700, 800, 900, 1,000.  Formulation 3 is where G falls short of the 
proceeds of risk-free investment by an absolute amount; thus G = 1,000exp(δT) � H, where 
H = 300, 200, 100, 0.  When H = 0 we get the same result as when K =1,000.  When T = 0 we 
get the same value of G for L = 700, K =700 and H=300, but for the same starting level, the 
second formulation provides a higher guarantee than the first and the third a higher guarantee 
than the second.  Graphs of the three formulations for L = 700 and 1,000, K =700 and 1,000 
and H=300 and H=0 (which is the same as K = 1,000) are shown in Figure 2.1. 
 
2.6 As one example, Table 2.1 shows the details for T = 20 with L = 0 to 2,600 in 200s, 
K = 100 to 1,000 in 100s and H = 1,000 to 0 in 100s.  The maximum possible guarantee is 
1,000exp(δT) =1,000exp(0.05*20) = 2,718.28.  One can readily confirm that nE = G and 
n(1 + p) = 1,000 in each case.  One can also see that as G increases so do E and p, while n 
reduces.  This is all as one might expect. 
 



 

 

Table 2.1.  Details for different guarantees for T = 20. 
 

Formulation Amount 
guaranteed, G 

Exercise price, 
E 

Put price, p Number of units 
of share plus 

put, n 
     

L = 0 0 0 0 1000 
L = 400 400 0.401 0.002 998.171 
L = 600 600 0.605 0.008 992.556 
L = 800 800 0.815 0.019 981.531 

L = 1,000 1,000 1.037 0.037 964.171 
L = 1,200 1,200 1.277 0.064 939.753 
L = 1,400 1,400 1.543 0.102 907.512 
L = 1,600 1,600 1.847 0.154 866.438 
L = 1,800 1,800 2.209 0.227 815.026 
L = 2,000 2,000 2.664 0.332 750.830 
L = 2,200 2,200 3.287 0.494 669.414 
L = 2,400 2,400 4.277 0.782 561.097 
L = 2,600 2,600 6.606 1.541 393.558 

     
K = 100 271.8 0.272 0.000 999.586 
K = 200 543.7 0.547 0.005 994.634 
K = 300 815.5 0.832 0.020 980.423 
K = 400 1,087.3 1.139 0.048 954.421 
K = 500 1,359.1 1.486 0.093 914.778 
K = 600 1,631.0 1.898 0.164 859.201 
K = 700 1,902.8 2.428 0.276 783.840 
K = 800 2,174.6 3.194 0.469 680.944 
K = 900 2,446.5 4.617 0.887 529.829 

K = 1,000 2,718.3 n/a n/a 0 
     

H = 1,000 1,718.3 2.052 0.194 837.409 
H = 900 1,818.3 2.246 0.235 809.736 
H = 800 1,918.3 2.463 0.284 778.823 
H = 700 2,018.3 2.712 0.344 744.195 
H = 600 2,118.3 3.004 0.418 705.191 
H = 500 2,218.3 3.357 0.513 660.852 
H = 400 2,318.3 3.802 0.640 609.688 
H = 300 2,418.3 4.404 0.821 549.156 
H = 200 2,518.3 5.311 1.109 474.196 
H = 100 2,618.3 7.053 1.694 371.249 

H = 0 2,718.3 n/a n/a 0 
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Figure 2.1. Values of guarantees with different formulations; δ=0.5. 
 
 
3 Comparison of performance 
 
3.1 Now how do we compare the results of these different levels of guarantee?  One way is 
to use a utility function.  But what function?  I shall assume that the investor�s downside risk, 
whatever it may be, is fully covered by the guarantee amount.  Returns below that amount are 
abhorred, and the guarantee amount (assuming that there is no counterparty risk) fully avoids 
the investor getting into undesirable territory.  Since a return below the guaranteed amount 
cannot happen, we do not need to worry about what utility function to use in this region.  
Above the guaranteed amount I suggest that a linear utility function is satisfactory.  Since the 
undesirable downside risk is avoided, we do not need to take a risk-averse view about the 
upside. 
 
3.2 Other approaches would be possible.  In Wilkie (1998) I used a �kinked linear� utility 
function.  In both that case and this I assume a linear (one for one) utility function above some 
threshold.  But in that case the utility function below the threshold was linear with a higher 
slope than above the threshold, so returns below the threshold were undesirable but admitted.  
In this present case the utility function below the threshold is assumed to fall vertically, and 
we cope with this by the protected portfolio strategy. 
 
3.3 Since I assume a linear utility function above the guarantee level, we need to calculate 
only the expected return on our investment.  To do this we need to make an additional 
assumption about the real world (as opposed to the risk-neutral) return on shares.  I assume 
logarithmic Brownian motion for the share process and I define the risk premium on shares as 
π, so that the median return on shares per year is exp(δ + π) and the mean return is 
exp(δ + π + ½σ2).  I then assume initially that π = 0, so that the only extra return on shares as 
compared with risk-free investment comes from the skewness introduced by the lognormal 
distribution.  One could well use a higher value of π, as I consider in Section 5; it would be 
unlikely that one would normally wish to use a lower value for π, though any value greater 



 

 

than �½σ2 would still produce a small premium on shares as measured by mean returns.  The 
numerical values I have chosen (δ = 0.05 and σ = 0.2) give an annual rate of return on risk-
free investment (which I often call �cash� for convenience) of 5.1271% and a mean rate of 
return on shares of 7.2508%.  The risk premium in log terms is ½σ2 = 0.02, as a difference in 
means it is 7.2508% � 5.1271% = 2.1237%, and in compound terms it is 
100(1.072508/1.051271 �1) = 2.0201%. 
 
3.4 Since the mean return on shares is higher than the risk-free rate we can assume that the 
longer the term of the investment, the more that shares will pull ahead, in spite of the cost of 
purchasing the put options.  So measuring absolute differences would be misleading.  I have 
calculated two figures, the Ratio, which is the ratio of the expected amount of our investment 
to the amount of a risk free investment over the same term; and the Premium, which is the 
Ratio converted to an annual rate of return.  Thus if the expected return on our investment in 
shares and puts over time period T (and with some chosen guarantee) is V, and the risk-free 
return over the same time period is A = 1,000exp(δT), then Ratio = V/A, and 
Premium = 100(Ratio1/T � 1). 
 
3.5 The expected return over the period can be calculated by the integral of a normal and a 
lognormal distribution over limited ranges.  Thus the expected return on the puts depends on 
the probability that the puts are exercised, which is the probability that the return on shares 
falls below the exercise price, E.  The expected return on the shares is the expected return 
only if the return on shares exceeds the exercise price.  Thus we have: 
 
 V = n[∫0E E.f(x)dx + ∫E∞ x.f(x)dx], 
 
where f(x) is the density function of a lognormal distribution with parameters (δ + π)T  and 
σ2T.  Thus we get: 
 
V = n.[E.N((logE�(δ + π)T)/σ√T) + exp((δ + π +½σ2)T).{1 � N((logE�(δ + π)T)/σ√T)� σ√T)}] 
 
where N(.) is the normal distribution function. 
 
3.6 Table 3.1 shows details of the expected return, V, the Ratio and the Premium, for 
T = 20, for the same guarantees as shown in Table 2.1.  Note that the amount of risk-free 
investment after 20 years is $2,718.28, which is the denominator of the Ratio.  Obviously, as 
the amount guaranteed, G, increases, and the number of shares purchased falls, the 
performance reduces, so that V, the Ratio and the Premium all reduce. 
 



 

 

Table 3.1.  Details of performance: T = 20 
 

Formulation Amount 
guaranteed, G 

Number of units 
of share plus 

puts, n 

Expected value 
of return, V 

Ratio = 
V/2,718.28 

Premium % 

      
L = 0 0 1,000 4,055.2 1.492 2.020 

L = 200 200 999.886 4,054.8 1.492 2.020 
L = 400 400 998.171 4,049.4 1.490 2.013 
L = 600 600 992.556 4,032.7 1.484 1.992 
L = 800 800 981.531 4,001.7 1.472 1.953 

L = 1,000 1,000 964.171 3,955.5 1.455 1.893 
L = 1,200 1,200 939.753 3,893.6 1.432 1.813 
L = 1,400 1,400 907.512 3,815.8 1.404 1.710 
L = 1,600 1,600 866.438 3,721.7 1.369 1.583 
L = 1,800 1,800 815.026 3,610.3 1.328 1.429 
L = 2,000 2,000 750.830 3,480.0 1.280 1.243 
L = 2,200 2,200 669.414 3,327.5 1.224 1.016 
L = 2,400 2,400 561.097 3,146.2 1.157 0.734 
L = 2,600 2,600 393.558 2,918.4 1.074 0.356 

      
K = 100 271.8 999.586 4,053.8 1.491 2.018 
K = 200 543.7 994.634 4,038.8 1.486 1.999 
K = 300 815.5 980.423 3,998.7 1.471 1.949 
K = 400 1,087.3 954.421 3,930.4 1.446 1.861 
K = 500 1,359.1 914.778 3,833.0 1.410 1.733 
K = 600 1,631.0 859.201 3,705.6 1.363 1.561 
K = 700 1,902.8 783.840 3,545.9 1.305 1.338 
K = 800 2,174.6 680.944 3,348.2 1.232 1.048 
K =  900 2,446.5 529.829 3,098.6 1.140 0.657 

K = 1,000 2,718.3 0 2,718.3 1 0 
      

H = 1,000 1,718.3 837.409 3,658.0 1.346 1.496 
H = 900 1,818.3 809.736 3,599.2 1.324 1.414 
H = 800 1,918.3 778.823 3,535.7 1.301 1.323 
H = 700 2,018.3 744.195 3,467.0 1.276 1.224 
H = 600 2,118.3 705.191 3,392.8 1.248 1.114 
H = 500 2,218.3 660.852 3,312.2 1.219 0.993 
H = 400 2,318.3 609.688 3,224.4 1.186 0.857 
H = 300 2,418.3 549.156 3,127.7 1.151 0.704 
H = 200 2,518.3 474.196 3,019.5 1.111 0.527 
H = 100 2,618.3 371.249 2,893.5 1.065 0.313 

H = 0 2,718.3 0 2,718.3 1 0 
 
 

3.7 Tables 3.2 to 3.7 show the values of Ratio and Premium % for different periods (which 
is what we are really interested in), for selected levels of guarantee: using formulation 1, with 
G = L for L= 700 to 1,200 in 100s; using formulation 2, with G = Kexp(δT), for K = 700, 800, 
900 and 1,000; using formulation 3, with G = exp(δT) � H, with H= 300, 200, 100 and 0.  As 
noted in ¶2.5 the results for K = 1,000 are the same as for H = 0, and these guarantees require 
investment wholly in the risk-free investment.  Figures 3.2 to 3.7 correspond to Tables 3.2 to 
3.7 and show the results graphically. 
 



 

 

3.8 From the Tables or the Figures, we can identify a number of features.  The Ratio is 
never below 1, so the Premium is never negative. 
 
3.9 For formulation 1, with the guarantee constant (relatively the lowest guarantee of the 
three), the Ratio increases steadily with term.  For high guarantees the Premium also increases 
with term, approaching its maximum level of just over 2% in all cases.  However, for lower 
levels of guarantee, the Premium at first reduces a little as the term increases.  This is only 
just noticeable for L = 700, 800 and 900, where the minimum value is reached within five 
years but it is more conspicuous in Figure 3.3 where lines for L = 500 and L = 600 are 
included. 
 
3.10 For formulation 2, with the guarantee a constant proportion of the risk-free return (the 
intermediate level of the three, and perhaps the most realistic), the Ratios also increase with 
term, except for the limiting case K = 1,000, but the Premiums reduce with term for many 
years, until beyond term 30, after which they increase slightly. 
 
3.11 For formulation 3, with the guarantee a fixed amount below the risk free return (the 
strongest guarantee of the three) the Ratios are much smaller than with the other formulations, 
but initially rise, and then fall, reaching a peak at terms around 25 to 30 years.  The Premiums 
steadily fall with term. 
 
3.12 Thus, depending on whether one considers Ratios or Premiums, and depending on 
which type of guarantee one considers, one can find values that rise consistently with term, 
fall consistently, fall then rise, or rise then fall.  However, as already noted, in each case the 
Ratio is greater than 1, so that the mean return from the portfolio of shares plus puts is greater 
than the return on the risk-free investment.  Thus the investor with the utility function I have 
postulated, namely linear above the guarantee level, and �minus infinity� below it, would still 
prefer the protected portfolio to the risk-free investment.  It seems to me also that when the 
Ratio is rising, the investor would undoubtedly be happier with the protected investment for a 
marginally longer term, even though the Premium may be falling.  The Premium represents 
the average return over the years of the term, and so long as the marginal return is greater than 
zero, which is the case so long as the Ratio is rising, the protected portfolio remains preferable 
as the term increases. 
 
3.13 Another measure that one might look at is the median return.  This can take one of two 
values: if the probability of the put being exercised is less than one half, then the median 
return is equal to n.exp(δT), which is less than the median (and only) return on the risk-free 
investment of 1,000exp(δT); if the probability of the put being exercised is greater than one 
half, then the median return is equal to the exercise price, but all other returns are greater than 
that.  While the median return is useful measure with a skew distribution that continues in 
both directions, for a distribution such as we have here, with a probability mass at one end, 
the median does not seem as useful a measure and I do not consider it further. 



 

 

Table 3.2.  Guarantee G = L: T = 1 to 50: Ratios 
 

Term L = 700 L = 800 L = 900 L = 1,000 L = 1,100 L = 1,200 L = 1,300 
1 1.020 1.019 1.015 1.008    
2 1.039 1.036 1.031 1.021 1.002   
3 1.059 1.054 1.047 1.036 1.019   
4 1.078 1.073 1.065 1.053 1.036 1.010  
5 1.099 1.093 1.084 1.072 1.055 1.032  
6 1.120 1.113 1.104 1.091 1.075 1.053 1.023 
7 1.141 1.134 1.125 1.112 1.096 1.076 1.049 
8 1.164 1.156 1.147 1.134 1.118 1.099 1.075 
9 1.186 1.179 1.169 1.157 1.142 1.123 1.100 

10 1.210 1.203 1.193 1.181 1.166 1.148 1.126 
        

15 1.337 1.329 1.320 1.310 1.297 1.282 1.265 
20 1.479 1.472 1.464 1.455 1.445 1.432 1.419 
25 1.636 1.631 1.624 1.617 1.608 1.598 1.587 
30 1.811 1.807 1.801 1.795 1.788 1.779 1.771 
35 2.004 2.000 1.996 1.991 1.985 1.978 1.971 
40 2.218 2.214 2.211 2.206 2.202 2.196 2.191 
45 2.453 2.450 2.447 2.444 2.440 2.436 2.431 
50 2.713 2.711 2.708 2.705 2.702 2.699 2.695 

 
Table 3.3. Guarantee G = L: T = 1 to 50: Premium %. 

 
Term L = 700 L = 800 L = 900 L = 1,000 L = 1,100 L = 1,200 L = 1,300 

1 1.988 1.865 1.533 0.793    
2 1.939 1.794 1.513 1.025 0.098   
3 1.914 1.776 1.544 1.181 0.612   
4 1.903 1.779 1.584 1.298 0.885 0.238  
5 1.900 1.789 1.624 1.391 1.071 0.623  
6 1.901 1.803 1.661 1.468 1.210 0.868 0.386 
7 1.905 1.818 1.695 1.532 1.320 1.047 0.689 
8 1.911 1.833 1.726 1.586 1.409 1.185 0.903 
9 1.917 1.847 1.754 1.633 1.482 1.296 1.066 

10 1.923 1.861 1.779 1.674 1.544 1.387 1.196 
        

15 1.953 1.916 1.870 1.815 1.748 1.670 1.581 
20 1.975 1.953 1.925 1.893 1.856 1.813 1.764 
25 1.990 1.976 1.959 1.940 1.918 1.893 1.864 
30 2.000 1.991 1.981 1.969 1.955 1.940 1.923 
35 2.006 2.001 1.994 1.987 1.978 1.968 1.958 
40 2.011 2.007 2.003 1.998 1.993 1.986 1.980 
45 2.014 2.012 2.009 2.006 2.002 1.998 1.994 
50 2.016 2.014 2.012 2.010 2.008 2.005 2.003 
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Table 3.4. Guarantee G = Kexp(δT): T = 1 to 50: Ratios 
 

Term K = 700 K = 800 K = 900 K = 1,000 
1 1.020 1.018 1.013 1.0 
2 1.037 1.032 1.021 1.0 
3 1.054 1.044 1.029 1.0 
4 1.069 1.056 1.036 1.0 
5 1.084 1.067 1.043 1.0 
6 1.099 1.079 1.050 1.0 
7 1.113 1.090 1.056 1.0 
8 1.128 1.100 1.062 1.0 
9 1.142 1.111 1.069 1.0 

10 1.156 1.122 1.075 1.0 
     

15 1.229 1.176 1.107 1.0 
20 1.305 1.232 1.140 1.0 
25 1.385 1.291 1.175 1.0 
30 1.471 1.354 1.212 1.0 
35 1.563 1.422 1.251 1.0 
40 1.663 1.495 1.294 1.0 
45 1.771 1.575 1.340 1.0 
50 1.889 1.660 1.390 1.0 

 
Table 3.5.  Guarantee G = Kexp(δT): T = 1 to 50:  Premium % 

 
Term K = 700 K = 800 K = 900 K = 1,000 

1 1.960 1.763 1.262 0.0 
2 1.843 1.569 1.058 0.0 
3 1.752 1.453 0.955 0.0 
4 1.681 1.373 0.889 0.0 
5 1.626 1.314 0.842 0.0 
6 1.581 1.268 0.808 0.0 
7 1.544 1.232 0.781 0.0 
8 1.513 1.202 0.759 0.0 
9 1.486 1.177 0.741 0.0 

10 1.463 1.155 0.726 0.0 
     

15 1.383 1.085 0.680 0.0 
20 1.338 1.048 0.657 0.0 
25 1.310 1.027 0.646 0.0 
30 1.294 1.016 0.642 0.0 
35 1.284 1.011 0.643 0.0 
40 1.279 1.011 0.647 0.0 
45 1.278 1.014 0.653 0.0 
50 1.280 1.019 0.661 0.0 
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Figure 3.5: Guarantee formulation 2: Premiums % 



 

 

Table 3.6.  Guarantee G = exp(δT) � H: T = 1 to 50:  Ratios 
 

Term H = 300 H = 200 H = 100 H = 0 
1 1.019 1.017 1.012 1.0 
2 1.036 1.030 1.020 1.0 
3 1.050 1.041 1.026 1.0 
4 1.063 1.050 1.031 1.0 
5 1.074 1.058 1.036 1.0 
6 1.084 1.065 1.040 1.0 
7 1.093 1.071 1.043 1.0 
8 1.101 1.077 1.046 1.0 
9 1.108 1.082 1.049 1.0 

10 1.114 1.086 1.052 1.0 
     

15 1.138 1.103 1.060 1.0 
20 1.151 1.111 1.065 1.0 
25 1.156 1.114 1.066 1.0 
30 1.156 1.113 1.065 1.0 
35 1.152 1.110 1.063 1.0 
40 1.146 1.106 1.061 1.0 
45 1.138 1.100 1.057 1.0 
50 1.130 1.094 1.054 1.0 

 
Table 3.7.  Guarantee G = exp(δT) � H: T = 1 to 50:  Premium % 

 
Term H = 300 H = 200 H = 100 H = 0 

1 1.943 1.730 1.225 0.0 
2 1.783 1.494 0.992 0.0 
3 1.646 1.338 0.862 0.0 
4 1.531 1.222 0.774 0.0 
5 1.433 1.129 0.706 0.0 
6 1.348 1.053 0.652 0.0 
7 1.273 0.987 0.607 0.0 
8 1.206 0.929 0.568 0.0 
9 1.144 0.878 0.534 0.0 

10 1.089 0.831 0.504 0.0 
     

15 0.866 0.653 0.391 0.0 
20 0.704 0.527 0.313 0.0 
25 0.580 0.432 0.255 0.0 
30 0.483 0.358 0.211 0.0 
35 0.405 0.299 0.176 0.0 
40 0.341 0.251 0.147 0.0 
45 0.288 0.212 0.124 0.0 
50 0.244 0.179 0.105 0.0 
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4 A portfolio insurance approach 
 
4.1 Another way of looking at the model described in Sections 2 and 3 is through �portfolio 
insurance�.  A put option can be hedged by the writer taking the price of the call, selling an 
appropriate amount of the share short, and investing the combined proceeds in the risk-free 
investment.  The amount of the share to sell is given by the �hedge ratio�, h.  We find that 
h = N(�d1) in the Black-Scholes formula as given in ¶2.2.  Instead of buying put options we 
could arrange the hedge portfolio ourselves.  Instead of buying n shares we would need to buy 
only n(1 � h) shares.  The rest of our funds we would invest in the risk-free investment.  This 
is only the initial position.  We need to keep on altering the balance of shares and risk-free 
investment so as to maintain the properly hedged position.  In theory this has to be done 
continuously and costlessly.  In practice this is not possible, but it is what is to be assumed by 
the writer of options in order to find what in insurance terminology would be called the 
theoretical �net premium�, before adding the margins necessary in practice. 
 
4.2 We could equally well have looked at the investment described in Section 2 as 
consisting of a risk-free investment for the amount of the guarantee, plus a call option that 
would give us the benefit of the upside performance of shares.  If we applied the portfolio 
insurance strategy to this �cash plus call� investment we would have exactly the same 
proportions of cash and shares as with our �share plus put� model, since the payoffs from the 
two strategies are identical. 
 
4.3 The proportion of shares in our initial �insured� or �protected� portfolio gives a very 
close indication of the overall performance of the portfolio.  It is not exact, because different 
guarantee amounts require different continuous hedging strategies, and so may end up 
differently.  But empirically one can observe that it is close.  Thus another way of looking at 
the relative desirability of shares over different time periods is to look at the different 
proportions of shares in the initial portfolios. 
 
4.4 Tables 4.1 and 4.2 show details for this way of looking at the model for two examples, 
with guarantees with L = 1,000 and K = 700.  The former is a middling level weak (�money 
back�) guarantee; the latter is a realistic guarantee where there is substantial initial surplus 
(one can describe it as having $300 �surplus�, with liabilities of $700).  One can see that in 
the former case the hedge ratio is at quite a high level (0.581) for T = 1, and reduces to quite a 
low level.  The number of units purchased increases slowly with term, whereas the equivalent 
number of shares increases rapidly.  The Ratio and the Premium increase steadily with term.  
The final column shows the probability of the put being exercised, which is above 0.5 for the 
first two years, falling off thereafter. 
 
4.5 The second example shows almost the opposite.  The hedge ratio starts out low, rises to 
a peak in years 25 to 30, then falls again.  The number of units purchased and the equivalent 
number of shares both fall from quite high initial levels.  The Ratio rises steadily, but nearly 
as much as in the first example.  The Premium initially falls, bottoms out at about T = 44 and 
then rises slightly.  The probability of the put being exercised starts out low and rises, 
reaching 0.5 by T = 32, and remaining above that level thereafter. 



 

 

Table 4.1. Details for L = 1,000, T =1 to 50. 
 

Term Hedge ratio No. units No. shares Ratio Premium Prob put 
1 0.581 895.0 374.8 1.008 0.793 0.620 
2 0.463 892.8 479.8 1.021 1.025 0.519 
3 0.386 896.1 550.1 1.036 1.181 0.454 
4 0.330 901.0 603.5 1.053 1.298 0.405 
5 0.287 906.4 646.4 1.072 1.391 0.367 
6 0.252 911.8 682.2 1.091 1.468 0.336 
7 0.223 917.1 712.6 1.112 1.532 0.309 
8 0.199 922.1 739.0 1.134 1.586 0.286 
9 0.178 926.9 762.1 1.157 1.633 0.267 

10 0.160 931.5 782.5 1.181 1.674 0.249 
       

15 0.099 950.5 856.8 1.310 1.815 0.183 
20 0.064 964.2 902.8 1.455 1.893 0.141 
25 0.042 974.1 932.8 1.617 1.940 0.111 
30 0.029 981.2 953.0 1.795 1.969 0.088 
35 0.020 986.4 966.9 1.991 1.987 0.071 
40 0.014 990.1 976.5 2.206 1.998 0.058 
45 0.010 992.8 983.3 2.444 2.006 0.047 
50 0.007 994.8 988.1 2.705 2.010 0.039 

 
Table 4.2.  Details for K = 700, T =1 to 50. 

 
Term Hedge ratio No. units No. shares Ratio Premium Prob put 

1 0.031 997.4 966.8 1.020 1.960 0.038 
2 0.087 987.3 901.1 1.037 1.843 0.112 
3 0.130 974.3 847.9 1.054 1.752 0.170 
4 0.161 960.4 805.8 1.069 1.681 0.215 
5 0.185 946.5 771.8 1.084 1.626 0.250 
6 0.203 932.8 743.4 1.099 1.581 0.279 
7 0.218 919.5 719.3 1.113 1.544 0.303 
8 0.230 906.6 698.5 1.128 1.513 0.324 
9 0.239 894.2 680.2 1.142 1.486 0.342 

10 0.248 882.3 663.9 1.156 1.463 0.357 
       

15 0.273 828.8 603.0 1.229 1.383 0.414 
20 0.283 783.8 561.9 1.305 1.338 0.450 
25 0.287 745.5 531.7 1.385 1.310 0.475 
30 0.287 712.3 508.2 1.471 1.294 0.494 
35 0.284 683.2 489.1 1.563 1.284 0.508 
40 0.280 657.4 473.3 1.663 1.279 0.520 
45 0.275 634.4 459.9 1.771 1.278 0.529 
50 0.270 613.7 448.3 1.889 1.280 0.537 

 



 

 

5 Alternative parameters 
 
5.1 All the calculations so far have been done on the same �basis�, i.e. the same set of 
parameters, δ, π and σ.  It is interesting to see what difference changes in these make. 
Obviously the numerical results are different, but are the qualitative results also different? 
 
5.2 First I change the value of the risk premium, π.  I had set it at zero, as being the lowest 
plausible value.  But it is worth trying a smaller value, such as �0.01 or �0.02.  The latter 
would imply that the mean return on shares was the same as the risk-free rate, so the real-
world probabilities were the same as the risk-neutral ones.  One must note that the value of π 
does not affect the initial portfolio; the exercise price, the number of units, the hedge ratio and 
the equivalent number of shares remain unchanged.  All that differs is the expected 
performance, and hence the Ratio and the Premium. 
 
5.3 If the value of π is set to �0.02, then all investments, cash, shares and options, have the 
same expected return, all the Ratios are 1.0, and all the Premiums are 0.0%.  (This, 
incidentally, is a useful check on the calculations.)  If we put π = �0.0199 then the Ratios for 
any level guarantee that is not up to the maximum is greater than 1, though not by much.  
Thus purchasing the put options still allows the portfolio to outperform on average; this is not 
obvious, because the price of a put option is (normally) greater than its �value�, as is 
discussed in Section 6. 
 
5.4 If the value of π is set to +0.02 then the Ratios and Premiums are of course larger than 
when π = 0, but the overall shape of the results is much the same, with falling, rising, humped 
and hollowed patterns as before.  Where the pattern is not monotonic, the maxima and minima 
are shifted, sometimes to earlier years, sometimes to later. 
 
5.5 Now consider changes in the value of σ.  Increasing it to 0.25 or reducing it to 0.15 have 
the expected results.  Consider the increased value first: the options are dearer, the hedge ratio 
is increased, so the equivalent number of shares is reduced.  However, the expected return on 
shares is increased, so the Ratios and Premiums everywhere increase, with the overall pattern 
remaining the same.  The reverse happens when the value of σ is reduced.  If one reduces the 
value of σ to nearly zero (reducing it to zero introduces lots of divisions by zero in the 
calculations!), then shares have almost the same expected return as cash. 
 
5.6 Now consider changes in the value of δ.  Increasing δ changes the relative strengths of 
the three formulations for the guarantees.  Formulation 2 is relatively unchanged, and gives 
identical values for the Ratios and Premiums.  Formulation 1 is relatively weaker, and gives 
higher values for the Ratios and Premiums.  Formulation 3 is relatively stronger, and gives 
lower values for the Ratios and Premiums.  If δ is reduced the reverse occurs.  If δ is set to 
zero, all three formulations for the guarantee give the same results. 
 
5.7 One can therefore conclude that the general results obtained are not dependent on the 
specific values of the parameters, δ, π and σ, except when these are taken to certain extreme 
values and degenerate results are obtained. 



 

 

6 The value of options 
 
6.1 I observed in ¶5.3 that the �value� of a put option was less than its price.  This requires 
some explanation.  Consider the put/call parity statement.  �Cash plus call� is equivalent to 
�share plus put� (both options being European and for the same exercise price and term), in 
the sense that the payoff at the exercise date is the same for both bundles, and is equal to the 
greater of the payoff from the share and cash. 
 
6.2 To be specific: let the share price now be P, the exercise price be E, the risk free rate be 
δ, the standard deviation of the share price process be σ, and the time period be T.  Then the 
price of a call option, using the standard Black-Scholes formula for a European option, is: 
 
 WC = P.N(d1) � E.exp(�δT).N(d2) 
 
with 
 d1 = log(P/(E.exp(�δT)))/σ√T + ½σ√T 
 d2 = log(P/(E.exp(�δT)))/σ√T � ½σ√T 
 
and the price of a put option is  
 
 WP = E.exp(�δT).N(�d2) � P.N(�d1) 
 
6.3 Then the cost of �cash plus call� is given by: 
 
 E.exp(�δT) + WC = E.exp(�δT) + P.N(d1) � E.exp(�δT).N(d2) 
     = E.exp(�δT)(1 � N(d2)) + P.N(d1) 
     = E.exp(�δT)(N(�d2)) + P.N(d1) 
 
and the cost of �share plus put� is given by: 
 
 P + WP= P + E.exp(�δT).N(�d2) � P.N(�d1) 
     = P(1 � N(�d1)) + E.exp(�δT).N(�d2) 
     = P(N(d1)) + E.exp(�δT).N(�d2) 
 
which is the same as the cost of �cash plus call�. 
 
6.4 Now imagine that one does not need to pay the prices for all these immediately, but is 
able to defer payment till time T, with interest at the risk-free rate.  (One�s credit is assumed 
to be good enough for this!  The technical name for the interest on late payment for shares is 
contango, and I suppose it could be the same for options.).  The amounts to be paid become: 
 
 for cash E, instead of Eexp(�δT); 
 for the share Pexp(δT), instead of P; 
 for the call option WCexp(δT). = P.exp(δT).N(d1) � E. N(d2), instead of WC; 
 for the put option WPexp(δT). = E.N(�d2) � P.exp(δT).N(�d1), instead of WP. 
 
Put/call parity is still preserved. 
 
 
 



 

 

6.5 Now consider the expected values of the proceeds at time T.  For this we need also the 
risk premium on shares, π, as used previously.  The expected returns are: 
 
 for cash:  E (with certainty); 
 for the share:  P exp((δ + π + ½σ2)T); 
 for the call option:  ∫E/P

∞(Px � E) f(x)dx; 
 for the put option:  ∫0E/P(E � Px) f(x)dx, 
 
where f(x) is the density function of a lognormal distribution with parameters (δ + π)T  and 
σ2T.  Simplifying we get: 
 
for the call option:  P.exp((δ + π + ½σ2)T).N(f1)) � E.N(f2)) 
 
where 
 f1= (log(P/E) + (δ + π)T))/σ√T  + σ√T 
 f2= (log(P/E) + (δ + π)T))/σ√T   = Pr{x > E/P} 
 
and for the put option:   E.N(�f2) � P.exp((δ + π + ½σ2)T).N(�f1). 
 
Put/call parity is still preserved. 
 
6.6 Now let us put some numerical values into the formulae.  I assume T = 1, δ = 0.05, 
π = 0, σ = 0.2, all is in the main assumptions above, and also P = 100, E = 110.  We then get 
 

 Cost at time 0 Cost at time T Expected 
value at T 

Excess 
= ex val � cost 

Percentage 
excess 

Cash 104.64 110.00 110.00 0.00 0.00 
Share 100.00 105.13 107.25 2.12 2.02 
Call 6.04 6.35 7.35 1.00 15.71 
Put 10.68 11.22 10.10 �1.13 �10.04 
Cash + Call 
= Share + Put 

110.68 116.35 117.35 1.00 0.86 

 
6.7 Thus we can see that, on these assumptions, the expected value of the share at T = 1 is 
2.02% more than the (contangoed) cost of it; that the expected value of the call option is also 
higher than the cost, by a smaller absolute amount (1.00), but a larger percentage amount 
(15.71%); and that the expected value of the put option is less than the cost, by 1.13 or 
10.04%.  The numbers differ for other exercise prices and on other assumptions, but the 
pattern is preserved, unless we reduce π to equal �½σ2 = �0.2, so that the real-world 
probabilities are the same as the risk-neutral probabilities, and the expected values equal the 
(contangoed) cost. 
 
6.8 Table 6.1 shows the results for different terms, and Table 6.2 shows the results for 
different exercise prices for term T = 20.  One can observe that for a fixed exercise price, 
longer terms the amount by which the contangoed price of a put exceeds the expected value 
rises with term up to T = 39 and then falls slightly, whereas the percentage excess rises 
throughout.  By contrast, for fixed term, the �excess� rises with the exercise price, but the 
percentage excess falls. 
 
6.9 Whether shares or options are �good value� or �poor value� to an investor may be 
considered to depend on the investor�s utility function, but for an investor with a linear utility 
function who expects that on average shares outperform the risk-free investment, then the 



 

 

theoretical prices for put options are in general dear and those for call options are cheap.  On 
occasions the investor may take the view that share prices are �too high�, so that the expected 
return on shares is below that of cash, and then put options may seem to be good value, and 
both shares and call options poor value.  These are the not unexpected consequences for an 
investor who �takes a view� on the market. 
 

Table 6.1.  The values of options for E =110, for T = 1 to 50. 
 

 Share Call Put Share Call Put 
Term Excess Excess Excess % excess % excess % excess 

1 2.12 1.00 -1.13 2.02 15.71 -10.04 
2 4.51 2.66 -1.85 4.08 21.04 -15.21 
3 7.18 4.76 -2.43 6.18 25.25 -19.19 
4 10.17 7.25 -2.92 8.33 28.91 -22.55 
5 13.50 10.16 -3.34 10.52 32.23 -25.50 
6 17.21 13.49 -3.72 12.75 35.33 -28.16 
7 21.32 17.28 -4.05 15.03 38.28 -30.60 
8 25.88 21.54 -4.34 17.35 41.12 -32.85 
9 30.93 26.33 -4.60 19.72 43.88 -34.95 

10 36.50 31.67 -4.84 22.14 46.59 -36.93 
       

15 74.07 68.38 -5.69 34.99 59.86 -45.37 
20 133.69 127.52 -6.17 49.18 73.43 -52.17 
25 226.43 220.01 -6.42 64.87 87.96 -57.83 
30 368.45 361.95 -6.50 82.21 103.85 -62.66 
35 583.37 576.90 -6.47 101.38 121.42 -66.83 
40 905.56 899.20 -6.36 122.55 140.95 -70.46 
45 1384.83 1378.63 -6.20 145.96 162.73 -73.65 
50 2093.30 2087.30 -6.00 171.83 187.02 -76.45 

 
Table 6.2.  The values of options for E = 50 to 150, for T = 20 

 
Exercise Share Call Put Share Call Put 

price Excess Excess Excess % excess % excess % excess 
50 133.69 132.99 -0.70 49.18 59.66 -64.87 
60 133.69 132.45 -1.24 49.18 61.95 -62.16 
70 133.69 131.76 -1.93 49.18 64.25 -59.76 
80 133.69 130.90 -2.79 49.18 66.56 -57.60 
90 133.69 129.90 -3.79 49.18 68.86 -55.63 

100 133.69 128.77 -4.92 49.18 71.15 -53.83 
110 133.69 127.52 -6.17 49.18 73.43 -52.17 
120 133.69 126.17 -7.53 49.18 75.69 -50.62 
130 133.69 124.73 -8.97 49.18 77.92 -49.18 
140 133.69 123.21 -10.48 49.18 80.14 -47.83 
150 133.69 121.63 -12.06 49.18 82.33 -46.56 

 
 
7 Conclusions 
 
7.1 Bodie showed, in effect, that, if one wishes to guarantee the return from risk-free 
investment on one�s portfolio, then the only possibility is to invest in the risk-free investment.  
This fuller investigation shows that, with lower levels of desired guarantee different levels of  



 

 

investment in shares are possible, ranging from quite low to very high (strictly from nothing 
to all) depending on the level of guarantee, the term and one�s other assumptions.  The 
�protected portfolio� is constructed from investment in shares and put options (or cash and 
call options) or by synthetic �portfolio insurance� with the proportion of shares being changed 
continuously to replicate the option. 
 
7.2 Such a protected portfolio will deliver as a minimum the guaranteed amount, so it can 
be considered a suitable portfolio for an investor who has fixed money liabilities (or liabilities 
fixed in real terms if we treat the risk free investment as being fixed in real terms) which can 
be met exactly by the chosen guarantee at the end of the specified term.  One can look at the 
present value of the liabilities as the initial value of a guarantee using formulation 2, and the 
balance of the present funds as the �surplus� or �free estate�. 
 
7.3 Assuming that the investor does not take such a pessimistic view about shares that 
would assume a lower expected return on shares than on cash, then the initial portfolio will 
consist of shares to some extent.  For a fixed term, the lower the guarantee, the more can be 
invested in shares, and the higher the expected return.  As the term increases the proportion of 
shares may rise, or may fall, depending on how the guarantee changes with term.  In the 
circumstances assumed in the last sentence of ¶7.2 the proportion of shares that should be 
held falls with duration, which is contrary to popular preconceptions (and contrary to mine, 
before carrying out this investigation). 
 
7.4 The Ratio, that is the ratio of the expected return from the protected portfolio and the 
return on cash, may rise, fall, or rise and then fall for different formulations of guarantee.  The 
Premium, that is the annual compound equivalent of the Ratio, may rise, fall, or fall and then 
rise again, also for different formulations of guarantee.  All the numerical details depend on 
the parameters chosen, though the overall patterns remain the same.  Nothing is unambiguous. 
 
7.5 If we compare the theoretical Black-Scholes price of options (contangoed for late 
payment) with the expected value of the option at exercise, we find that, in normal 
circumstances, shares and call options are �good value�, whereas put options are �poor 
value�.  Thus, unless the investors utility function really requires a guarantee that certain 
liabilities can be met from the existing funds (and not, for example from the funds of a 
sponsoring employer, or from �slack� such as a with-profits system, or discretionary pension 
increases), investing so as meet a fixed guarantee with absolute certainty may not be the most 
effective investment policy. 
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